Artificial Neural Networks supported by Change-Point Detection for Interest Rates Forecasting
نویسندگان
چکیده
Interest rates are one of the most closely watched variables in the economy. They have been studied by a number of researchers since they strongly affect other economic and financial parameters. Contrary to other chaotic financial data, the movement of interest rates has a series of change points due to the monetary policy of the U.S. government. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in interest rates forecasting. The proposed model consists of three stages. The first stage is to detect successive change points in the interest rates dataset. The second stage is to forecast the change-point group with the backpropagation neural network (BPN). The final stage is to forecast the output with BPN. This study then examines the predictability of the integrated neural network model for interest rates forecasting using change-point detection.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملAn Intelligent Clustering Forecasting System based on Change-Point Detection and Artificial Neural Networks: Application to Financial Economics
This article suggests a new clustering forecasting system to integrate change-point detection and artificial neural networks. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in the forecasting model. The proposed models consist of two stages. The first stage, the clustering neural network modeling s...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملForecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000